Intertwiner realization of a simple non-standard R-matrix

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys. A: Math. Gen. 27251
(http://iopscience.iop.org/0305-4470/27/1/019)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 21:20

Please note that terms and conditions apply.

COMMENT

Intertwiner realization of a simple non-standard \boldsymbol{R}-matrix \dagger

Xu-Feng Liu
CCAST (World Laboratory), PO Box 8730, Beijing 100080, People's Republic of China, and Mathematics Department, Beijing University, Beijing 100871, People's Republic of China \ddagger

Received 19 March 1993, in final form 26 July 1993

Abstract

Using Jimbo's method, we realize the non-standard R-matrix $\breve{R}^{\frac{1}{4}}(x, y)$ as an intertwiner between non-generic irreducible representations of the quantum affine algebra $U_{q}\left(\hat{s} l_{2}\right)$.

The intertwiner theory [1] developed by Jimbo is powerful in constructing solutions to the Yang-Baxter equation (YBE) with spectral parameters [2-4]. It turns out that the so-called standard R-matrices with spectral parameters, for example, the R-matrix associated with the six-vertex model, can be realized as the intertwiners between two parametrized irreducible representations of the quantum universal enveloping algebra $U_{q}(g)$ [5,6] with g being an affine Lie algebra. Then the question naturally arises whether we can also put the non-standard R-matrices [7] into the framework of this theory to obtain a unified handling of solutions to Ybe. In this comment we try to answer this question through a simple example, in which we explain the non-standard R-matrix $\mathscr{R}^{\frac{1}{2}}(x, y)$ as an intertwiner between two parametrized irreducible representations of $U_{q}\left(\hat{s} l_{2}\right)$ at roots of unity.

Definition. The quantum affine algebra $U_{q}\left(\hat{s} l_{2}\right)$ is an associative algebra over the complex number field \mathbb{C} generated by the elements $e_{i}, f_{i}, h_{i}(i=0,1)$ and the unit 1 subject to the following relations:

$$
\begin{array}{lrl}
{\left[h_{i}, e_{i}\right]=2 e_{i}} & {\left[h_{i}, f_{i}\right]=-2 f_{i}} \\
{\left[h_{i}, e_{j}\right]=-2 e_{j}} & {\left[h_{i}, f_{j}\right]=2 f_{j}} & (i \neq j) \\
{\left[h_{0}, h_{1}\right]=0} & {\left[e_{i}, f_{j}\right]=\delta_{i j}\left[h_{i}\right] \equiv \delta_{i j}\left(q^{h_{i}}-q^{-h_{i}}\right) /\left(q-q^{-1}\right)} \tag{1}\\
e_{i}^{3} e_{j}-[3] e_{i}^{2} e_{j} e_{i}+[3] e_{i} e_{j} e_{i}^{2}-e_{j} e_{i}^{3}=0 \\
f_{i}^{3} f_{j}-[3] f_{i}^{2} f_{j} f_{i}+[3] f_{i} f_{j} f_{i}^{2}-f_{j} f_{i}^{3}=0 & (i \neq j) .
\end{array}
$$

It is well known that $U_{q}\left(\hat{s} l_{2}\right)$ can be endowed with the coproduct Δ

$$
\begin{aligned}
& \Delta\left(e_{i}\right)=q^{h_{i}} \otimes e_{i}+e_{i} \otimes 1 \\
& \Delta\left(f_{i}\right)=f_{i} \otimes q^{-h_{i}}+1 \otimes f_{i} \\
& \Delta\left(h_{i}\right)=h_{i} \otimes 1+1 \otimes h_{i}
\end{aligned}
$$

[^0]and the antipode S
$$
S\left(h_{2}\right)=-h_{i} \quad S\left(e_{i}\right)=-q^{-h_{1}} e_{1} \quad S\left(f_{2}\right)=-f_{i} q^{h_{1}}
$$
to become a Hopf algebra, and according to Jimbo's argument for $x \in \mathbb{C}-\{0\}$ there exists a homomorphism of algebras $\varphi_{x} \cdot U_{q}\left(\hat{s} l_{2}\right) \rightarrow U_{q}\left(s l_{2}\right)$ given by
\[

$$
\begin{array}{lll}
\varphi_{x}\left(e_{0}\right)=x f & \varphi_{x}\left(f_{0}\right)=x^{-1} e & \varphi_{x}\left(h_{0}\right)=-h \\
\varphi_{x}\left(e_{1}\right)=e & \varphi_{x}\left(f_{1}\right)=f & \varphi_{x}\left(h_{1}\right)=h
\end{array}
$$
\]

where e, f and h are the generators of $U_{q}\left(s l_{2}\right)$, which satisfy

$$
[h, e]=2 e \quad[h, f]=-2 f \quad[e, f]=[h]
$$

Then from a representation (π, V) of $U_{q}\left(s l_{2}\right)$, where V is the representation space and π a homomorphic mapping from $U_{q}\left(s l_{2}\right)$ to $\operatorname{End}(V)$, one can form the composition $\left(\pi \cdot \varphi_{x} \otimes \pi \cdot \varphi_{y}\right) \cdot \Delta$.

$$
U_{q}\left(\hat{s} l_{2}\right) \xrightarrow{\Delta} U_{q}\left(\hat{s} l_{2}\right) \otimes U_{q}\left(\hat{s} l_{2}\right) \xrightarrow{\pi \cdot \varphi_{1} \otimes \pi \cdot \varphi_{r}}(\text { End } V \otimes \text { End } V)=\operatorname{End}(V \otimes V)
$$

which gives rise to a representation of $U_{q}\left(\hat{s} l_{2}\right)$ depending on $x, y \in \mathbb{C}-\{0\}$.
Jimbo's remarkable result [1] says that the standard R-matrices associated with $U_{q}\left(s l_{2}\right)$ are intertwiners (module isomorphisms) between certain representations $\left(\left(\pi \cdot \varphi_{x} \otimes \pi \cdot \varphi_{y}\right) \cdot \Delta, V \otimes V\right)$ and $\left(\left(\pi \cdot \varphi_{y} \otimes \pi \cdot \varphi_{x}\right) \cdot \Delta, V \otimes V\right)$ oin $U_{q}\left(\hat{s} l_{2}\right)$ with q being generic.

On the other hand, it has been proved that the non-standard R-matrices without spectral parameters associated with $U_{q}\left(s l_{2}\right)$ can be obtained from the universal R-matrix by considering the representations of $U_{q}\left(s l_{2}\right)$ at roots of unity [8]. So to realize the non-standard R-matrices with spectral parameters as intertwiners between irreducible representations of $U_{q}\left(\hat{s} l_{2}\right)$ we naturally consider the representations of $U_{q}\left(\hat{s} l_{2}\right)$ in the case that q is a root of unity.

Let us focus our attention on the simplest case that $q^{2}=-1$, in which one has a two-dimensional irreducible representation of $U_{q}\left(s l_{2}\right)$ depending on an arbitrary parameter $\lambda \in \mathbb{C}$. Suppose the representation space V is spanned by the vectors v_{0} and v_{1}, then the representation ($\pi, V)$ can be written as (for simplicity, from now on we will use module language) [8]:

$$
\begin{array}{lrll}
h v_{0}=\lambda v_{0} & h v_{1}=(\lambda+2) v_{1} & e v_{0}=v_{1} & e v_{1}=0 \\
f v_{0}=0 & f v_{1}=-[\lambda] v_{0} & &
\end{array}
$$

and the representation $\left(\left(\pi \cdot \varphi_{x} \otimes \pi \cdot \varphi_{J}\right) \cdot \Delta, V \otimes V\right)$ of $U_{q}\left(\hat{s} l_{2}\right)$ takes the following form

$$
\begin{aligned}
& h_{0}\left(v_{i} \otimes v_{j}\right)=-(2 \lambda+2 i+2 j)\left(v_{i} \otimes v_{j}\right) \\
& h_{1}\left(v_{i} \otimes v_{j}\right)=(2 \lambda+2 i+2 j)\left(v_{i} \otimes v_{j}\right) \quad i, j=0, i \\
& e_{0}\left(v_{0} \otimes v_{0}\right)=0 \quad e_{0}\left(v_{0} \otimes v_{1}\right)=-q^{-\lambda} y[\lambda] v_{0} \otimes v_{0} \\
& e_{0}\left(v_{1} \otimes v_{0}\right)=-x[\lambda] v_{0} \otimes v_{0} \\
& e_{0}\left(v_{1} \otimes v_{1}\right)=-x[\lambda] v_{0} \otimes v_{1}+q^{-\lambda} y[\lambda] v_{1} \otimes v_{0} \\
& f_{0}\left(v_{0} \otimes v_{0}\right)=y^{-1} v_{0} \otimes v_{1}+q^{\lambda} x^{-1} v_{1} \otimes v_{0} \\
& f_{0}\left(v_{0} \otimes v_{1}\right)=-q^{\lambda} x^{-1} v_{1} \otimes v_{1}
\end{aligned}
$$

$$
\begin{aligned}
& f_{0}\left(v_{1} \otimes v_{0}\right)=y^{-1} v_{1} \otimes v_{1} \quad f_{0}\left(v_{1} \otimes v_{1}\right)=0 \\
& e_{1}\left(v_{0} \otimes v_{0}\right)=v_{1} \otimes v_{0}+q^{\lambda} v_{0} \otimes v_{1} \\
& e_{1}\left(v_{0} \otimes v_{1}\right)=v_{1} \otimes v_{1} \quad e_{1}\left(v_{1} \otimes v_{0}\right)=-q^{\lambda} v_{1} \otimes v_{1} \\
& e_{1}\left(v_{1} \otimes v_{1}\right)=0 \\
& f_{1}\left(v_{0} \otimes v_{0}\right)=0 \quad f_{1}\left(v_{0} \otimes v_{1}\right)=-[\lambda] v_{0} \otimes v_{0} \\
& f_{1}\left(v_{1} \otimes v_{0}\right)=-q^{-\lambda}[\lambda] v_{0} \otimes v_{0} \\
& f_{1}\left(v_{1} \otimes v_{1}\right)=-[\lambda] v_{1} \otimes v_{0}+[\lambda] q^{-\lambda} v_{0} \otimes v_{1} .
\end{aligned}
$$

Using these equations one can easily prove that as a $U_{q}\left(\hat{s} l_{2}\right)$ module the vector space $V \otimes V$ is generated by the vector $v_{1} \otimes v_{1}$ when $x / y \neq q^{2 \lambda}$ and $[2 \lambda] \neq 0$. In fact, from the vector $v_{1} \otimes v_{1}$ we can obtain the following vectors through the actions of $U_{q}\left(s l_{2}\right)$:

$$
\begin{aligned}
& e_{0} v_{1} \otimes v_{1}=-x[\lambda] v_{0} \otimes v_{1}+q^{-\lambda} y[\lambda] v_{1} \otimes v_{0} \\
& f_{1} e_{0} v_{1} \otimes v_{1}=\left(x-q^{-2 \lambda} y\right)[\lambda]^{2} v_{0} \otimes v_{0} \\
& f_{0} f_{1} e_{0} v_{1} \otimes v_{1}=\left(x-q^{-2 \lambda} y\right)[\lambda]^{2}\left(y^{-1} v_{0} \otimes v_{1}+q^{\lambda} x^{-1} v_{1} \otimes v_{0}\right)
\end{aligned}
$$

and it is easily seen that when $x / y \neq q^{-2 \lambda}$ and $[2 \lambda] \neq 0$ these vectors together with the vector $v_{1} \otimes v_{1}$ span the whole space $V \otimes V$.

Proposition λ. If $x / y \neq q^{ \pm 2 \lambda}$ and $[2 \lambda] \neq 0$, the representation $\left(\left(\pi \cdot \varphi_{x} \otimes \pi \cdot \varphi_{y}\right) \cdot \Delta, V \otimes V\right)$ is irreducible.

Proof. Suppose S is a non-empty $U_{q}\left(\hat{s}_{2}\right)$-invariant subspace of $V \otimes V$, then an element $w \in S$ can be written as

$$
w=\sum_{i, j=0}^{1} c_{i j} v_{i} \otimes v_{j} \quad c_{i j} \in \mathbb{C}
$$

Since there exist only the following three cases, the proposition directly follows from the fact that $V \otimes V$ is generated by $v_{1} \otimes v_{1}$.

Case 1. $c_{00} \neq 0$ or $c_{00}=0, c_{01}-q^{\lambda} c_{10} \neq 0$.

$$
\begin{aligned}
& e_{1} w=c_{00}\left(v_{1} \otimes v_{0}+q^{\lambda} v_{0} \otimes v_{1}\right)+\left(c_{01}-q^{\lambda} c_{10}\right) v_{1} \otimes v_{1} \\
& f_{0} e_{1} w=c_{00}\left(y^{-1}-x^{-1} q^{2 \lambda}\right) v_{1} \otimes v_{1} .
\end{aligned}
$$

Case 2. $c_{00}=0$ and $c_{01}=q^{\lambda} c_{10} \neq 0$.

$$
\begin{aligned}
f_{0} w & =-x^{-1} q^{\lambda} c_{01} v_{1} \otimes v_{1}+y^{-1} c_{10} v_{1} \otimes v_{1} \\
& =\left(y^{-1}-x^{-1} q^{2 \lambda}\right) c_{10} v_{1} \otimes v_{1} .
\end{aligned}
$$

Case 3. $c_{00}=0$ and $c_{01}=q^{\lambda} c_{10}=0$.

$$
w=c_{11} v_{1} \otimes v_{1}
$$

For the relation between the representations $\left(\left(\pi \cdot \varphi_{x} \otimes \pi \cdot \varphi_{y}\right) \cdot \Delta, V \otimes V\right)$ and $\left(\left(\pi \cdot \varphi_{y} \otimes \pi \cdot \varphi_{x}\right) \cdot \Delta, V \otimes V\right)$ we have

Proposition 2. If $x / y \neq q^{ \pm 2 \lambda}$ and $q^{2 \lambda} \neq 1$, there exists an intertwiner between the representations $\left(\left(\pi \cdot \varphi_{x} \otimes \pi \cdot \varphi_{y}\right) \cdot \Delta, V \otimes V\right)$ and $\left(\left(\pi \cdot \varphi_{y} \otimes \pi \cdot \varphi_{x}\right) \cdot \Delta, V \otimes V\right)$.

Proof. We introduce the notation

$$
\phi \equiv\left(\pi \cdot \varphi_{x} \otimes \pi \cdot \varphi_{y}\right) \cdot \Delta \quad \psi \equiv\left(\pi \cdot \varphi_{y} \otimes \pi \cdot \varphi_{x}\right) \cdot \Delta
$$

then what we need to prove is that there is an automorphism $\check{R}(x, y)$ of the vector space $V \otimes V$ such that the diagram

is commutative. To this end let us consider the linear mapping $\check{R}\left(x, y^{\prime}\right)$ determined by the equations

$$
\begin{aligned}
& \breve{R}(x, y) v_{0} \otimes v_{0}=v_{0} \otimes v_{0} \\
& \check{R}(x, y) v_{0} \otimes v_{1}=\left(1 /\left(y q^{\lambda}-x q^{-\lambda}\right)\right)\left(\left(q^{\lambda}-q^{-\lambda}\right) y v_{0} \otimes v_{1}+(y-x) v_{1} \otimes v_{0}\right) \\
& \check{R}(x, y) v_{1} \otimes v_{0}=\left(1 /\left(q^{\lambda}-x q^{-\lambda}\right)\right)\left((y-x) v_{0} \otimes v_{1}+x\left(q^{\lambda}-q^{-\lambda}\right) v_{1} \otimes v_{0}\right) \\
& \check{R}(x, y) v_{1} \otimes v_{1}=\left(x q^{\lambda}-y q^{-\lambda}\right) /\left(y q^{\lambda}-x q^{-\lambda}\right) v_{1} \otimes v_{1} .
\end{aligned}
$$

After some calculation one can easily see that when $x / y \neq q^{ \pm 2 \lambda}, q^{2 \lambda} \neq 1 \check{R}(x, y)$ is an automorphism of $V \otimes V$, and its commutativity with the action of $U_{q}\left(\hat{s} \hat{l}_{2}\right)$ can also be verified directly. This proves the proposition.

Written in matrix form, the intertwiner $\check{R}(x, y)$ is
$\check{R}(x, y)=\frac{1}{y t-x t^{-1}}\left[\begin{array}{llll}y t-x t^{-1} & & & \\ & \left(t-t^{-1}\right) y & (y-x) & \\ & (y-x) & \left(t-t^{-1}\right) x & \\ & & & x t-y t^{-1}\end{array}\right] \quad t=q^{\lambda}$.
This is exactly the so-called non-standard R-matrix with spectral parameters associated with the fundamental representation of $U_{q}\left(s l_{2}\right)$. We have successfully realized it as an intertwiner between irreducible representations of $U_{q}\left(\hat{s} l_{2}\right)$ (in the case that [2 $\left.\lambda\right] \neq 0$) and it seems reasonable to expect that the other non-standard R-matrices with spectral parameters can be handled similarly.

Finally, we should mention that the R-matrix obtained above can also serve as an intertwiner of certain representations of the quantum superalgebra $U_{q}(\hat{s} l(1 \mid 1))[9]$. We should also mention that it has already been pointed out in [10] that the same R-matrix can be understood as the intertwiner of representations of the quantum affine algebra at q roots of unity. But a further explanation is not presented there. So compared with [10], this present paper includes some new results. We have treated the four-dimensional tensor representations in a mathematically rigorous way and we have derived the irreducibility condition precisely, which is not at all self-evident when q is a root of unity. Besides, we have made it clear that in the non-generic case the parameter t in the intertwiner is not the same as the deformation parameter q in the quantum affine algebra, in contrast to the generic case.

Acknowledgment

The author thanks Professor Min Qian for helpful discussions and thanks the referee for bringing [9] and [10] to his attention.

References

[1] Jimbo M 1993 Topics from representations of $U_{q}(g)$ Nankai Lecture Notes Series ed M-L Ge (Singapore:
World Scientific) to be published
[2] Yang C N 1967 Phys. Rev. Lett. 19 1312; 1968 Phys. Rev. 1681920
[3] Baxter R J 1972 Ann. Phys. 70193
[4] Faddeev L D 1981 Sov. Sci. Rev. Math. Phys. C 1107
[5] Drinfeld V G 1986 Quantum Groups, Proc. ICM Berkeley pp 798-820
[6] Jimbo M 1985 Lett. Math. Phys. 10 63; 1985 Lett. Math. Phys. 11247
[7] Ge M-L and Xue K New solutions of Braid group representations associated with YBE Preprint ITP-SB-90-20
[8] Ge M L, Liu X F and Sun C P 1991 Phys. Lett. 155A 137
[9] Kauffinan L H and Saluer H 1991 Commun. Math. Phys. 141293
[10] Berkovich A, Gomez C and Sierra G 1993 J. Phys. A: Math. Gen. 26 L45

[^0]: \dagger This work is supported by the National Natural Science Foundation of China.
 \ddagger Mailing address.

